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Abstract. The replica-symmetry-breaking solution of the Hopfield model is formulated in order
to investigate the multivalley structure of the rugged free energy. It is found that the resulting
variational equations are equivalent to those for the Sherrington—Kirkpatrick (sK) model as a
limit. Numerical solutions are obtained for the spin-glass phase. These provide us with a weight
distribution of the valleys.

1. Introduction

Recently the words “spin glasses’ (5G) have been seen in diverse fields [1,2]. They have
also appeared in many papers for neural network models. If we consider the Hopfield
model {3.4] as a globally and not umiformly conpected spin system, various $G-like
properties emerge. Its most significant characteristics are the existence of a large number of
metastable states and multivalley structures in phase space which are also typical examples
of ‘broken ergodicity’ [5]. These properties were originally derived from an interpretation
of the replica-symmetry-breaking (RSB) solution given by Parisi [6] for the Sherrington and
Kirkpatrick (SK) model [7] of sG, and were thought to be rather specific to the SK model.
More recent studies, however, have shown that this i not the case and that they are shared
by other infinite-range 5G models{8]. In the present work, we will show that the Hopfield
model, too, can be regarded as such a model.

Very useful for obtaining some ingight into the complexity of a valley structure is
the basin of attraction which gives a quantitative measure for the *spread’ of the valley,
Therefore, in a previous paper, we studied numerically relationships between remanent
overlaps and initial overlaps in the Hopfield model using Monte Carlo simulations and
finite size scaling at zero temperature (T = 0) [9]. This provides an intuitive understanding
for the valley structure in overlap space. In this paper, we consider the valleys in spin
configuration space by obtaining the full RSB solution of the Hopfield model. It tumns out
that the formulation obtained is equivalent to the one for the original SK model in the limit
Jo — 00, where o (= p/N) is the rate of memory-loading, p the number of random
patterns for memories and N the system size. In this way we also proved conjectures by
several authors [4,10,11] regarding the SG limit of the Hopfield model. Furthermore the
full RSB solutions are obtained numerically for the SG phase. N

The replica-symmetric (rS) solutions for the Hopfield model were investigated fully
by Amit, Gutfreund and Sompolinsky {AGS) [4]. One of their main resulis is that the RS
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solutions are stable in almost all regions that belong to the ‘retrieval phase’ where the
system behaves as an associative memory. They derived the mean-field equations and
critical storage capacity @, ~ 0.137 at T = 0 by extrapolating the RS solutions to the RSB
region. The RS solutions for the SG states, however, are unstable in the entire region T < T
(the SG transition temperature) and those for the retrieval states become unstable at T < Tp,
the generalized De Almeida-Thouless line [4, 12] for the Hopfield model. To overcome
this difficulty, Crisanti et a! have concentrated on estimating the critical storage capacity
by considering the first-step RSB scheme (which effectively means taking £ = 1 in the
appendix)- and they obtained the value &, ~ 0.145 [13]. On the other hand, in this paper,
the full RSB scheme will be employed to extract several pieces of information regarding the
multivalley structure of the free energy of the Hopfield model, which interpolates between
the Mattis model and the SK model. Furthermore, we will also reveal non-trivial asymptotic
shifts of the system to the SK model, i.e. the ‘SK limit’, using the notion of the rugged free
energy landscape.

In section 2, the weights of the valleys will be defined first. Next, the statistical
mechanical interpretation of the RSE solution and the relationships between the order
parameter function and the weight distribution of valleys will be given. In section 3, we
will briefly review the Hopfield model and apply the full RSB scheme. It turns out that the
formuiation obtained is equivalent to that for the original SK model as a limit. We solved
numerically the resulting variational equations for the SG phase with rather large «’s and
some values of temperature. These solutions provide us with the weight distribution of the
valleys. Our results are summarized in section 4.

2. Valleys

First let us define the weights of the valleys. When the phase space is divided intc a number
of valleys indexed by k, the weight of kth valley, Wy, is defined as the probability with

which a randomly chosen initial state is in the kth valley. If the system is at equilibrium,
W, can be represented as

Wi =exp(—Bf0/ Y exp(=Bf;) P Wi=1 (1
J k

where f; refers to the free energy of kth valley and g = 1/T. In connection with W,
Mézard et al [14] have defined a quantity

y= (Z WE) @
% J

where {---}r denotes the sample average. The quantity y roughly shows the number and
the width of the valleys and gives the relative distribution of the weights of the valleys. For
example, there is only one large valley for y = 1, while there are many valleys with small
weights for y ~ 0.

Secondly, let m; , = (5}, be the magnetic moment of the ith spin of the pth pure state.
Overlaps of magnetization between two pure states are defined as follows:

1 N
oo = ﬁ Zmi.pmi.a- (3)
i=l
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It is noted that the self-overlap, ¢,, (= g®*), denotes the Edwards-Anderson order

parameter. Using Boltzmann weights £, Py, the distribution of the overlap g is represented
as

Pg) = (Z P,Ps8(q — qpa)) : , @
P
The cumnulative distribution function is defined as
1 .
Y@ = [ 4P@). )
g

Y (q) also gives the density of pure states with an overlap larger than q. If we now consider
the function

q
H@)=1-Y(q) = f 4P ©

we see that its inverse, q(x), coincides exactly with the RSB solution of the SG order
parameter, which is why it is called the physical interpretation of the RSB solution [6, 15].
The case ¥ (g5*) refers to the self-overlap of a pure state by definition and is equivalent to
y in (2) since W = P, (one pure state for one valley). Furthermore, ¥ (g®*) is given by
the length of the platean of g(x) whose functional form depends on «. Hence, by obtaining
the RSB solutions for various values of ¢, the variation of y can be estimated.

3. The RSE scheme for the Hopfield model

3.1. The AGS theory
The Hamiltonian for the Hopfield model is given by

N 3
= _%Z‘II'J‘SI'SJ “Zth‘ffvSi (S; = £1) )
isj v i
where i1” is a field conjugate to one of a finite number (s < p) of ‘condensed patterns’{§] }.
Jij is an interaction constructed from p random patterns (§' = %1, p=1,...,p) as
Z f'ulg_'u' Jz =0, . (8)
.u=1

AGS have introduced the free energy of the Hamiltonian (7) as follows:

fa= ZZ(mﬂ)z + ——Tr In((1 — B — BQY + Zrabq.,b — L (inZo)
u—l a=1 R b ng
as n—0 (9)
where

= Tryy exp ( Z Fap0a0p + E J’ao'a) (10)

a#h

ou = VaEpS® | ya= ) (miAIE (V. o an
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Here | is a unit matrix with » x n elements, while Q is a replica matrix which gives the

order parameter gap. By Ty we denote explicitly that the trace is taken over n-replicated
binomial spins. Definitions for order parameters are given as follows:

=y oeen)  v=tes (12
aes = {57 Ststsh) 13)

Yap =~ Z«m“mb (14)
M>S
where
©OEN =23 3 o) as)
v=l Ev—t1

denotes the random average for s ‘condensed patterns’. In addition to g, in the SK model,
there appears one more order parameter, 74, depending on two replica indices. AGS have
shown that the RS solution (g,p = @, rzp = r) is stable in almost all regions which belong
to the so-called ‘retrieval phase’, and by extrapolating to the RSB region they derived mean-
field equations at zero temperature (§ — oo0). However, in the limit § — oc the full
RSB should be considered. Furthermore, the RS solutions for the SG states are unstable in
all regions for the SG phase. In the next section we will consider Parisi’s RSB scheme for
arbitrary values of & to extract the valleys’ variation to . In particular, the RSE discussion is

important for understanding the equivalence between the S& model and the Hopfield model
with large «.

3.2. The full RSB scheme

Following the formalisim of AGS and Parisi’s recipe of taking a continuum limit of partitions

of replica matrices (Parisi gauge), the free energy for the Hopfield mode! can be represented
as the functional

2

1 oo - _
fr=22 ( - f r(x)q(x)dx) - f J%GXP(zr(ZO))((g(O’h+Z)))

o, @ (PO o [a }
t3+3 E('") ﬁ[ T=xo ™ X()]+-/0x1—x(x)

(16)

which is maximized by the order parameter functions ¢(x) and r(x), and minimized by m".
Here g(x) and r{x) correspond to the order parameters (13),(14) in the continuum limit,
i.e. the 5G order parameter function and the order parameter function describing the noise
due to the uncondensed pattems, respectively. m” denotes the average overlap of the states
and the vth memorized pattern (12). The terms including x (x) correspond to the third term
in (9) and they are obtained by taking the continuum limits of the eigenvalues of the replica
matrix Q in (9) since it has a recursive structure. The details of the limiting process are
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left to the appendix. Furthermore, g(x, 2} (0 € x € 1, —o0 < 7 < 00) is a solution of the
following partial differential equation: - ‘

ax
g(1.2) = g 'In2cosh/aBz. ' (18)

The derivations of the terms containing g(x,z) are similar to the case for the sK
model {6,8,16]. x(x) and h correspond to the local susceptibilities at scale x and the
effective field, respectively (h* denotes the external field, conjugate with vth condensed
pattern), as

i= —% (" + ﬁxg‘z) (Parisi equation) (A =4 s -i;—i) San

1
X =8 (1 ~ 2q(x) - f 4@ dx) (19)

Zcm + 5" : . (20)
uul
Equation (16) cannot directly be maximized numerically since g(0, z) depends implicitly
on r{x) through (17). Therefore we apply the schemes by Sommers et af [17] and
Nemoto [18] to obtain the order parameter functions g(x),r(x). They make g(x,z)
independent of r(x) by introducing a Lagrange multiplier functlon P(x,z). The new
functional to be maximized is then defined as

filr.q, 8, Pl =fp[r,q,g]+f der(l,z) [g(l,z)—é—ancoshJEBz} )

1 0 f”' ’
—f dxf dz P(x, 2) {g+§(g"+ﬁxg’2)] o @1
0 —o0 - i

The equations to be solved can be obtained by taking functional derivatives of (21} with
respect to ¢, 7, g, P and m":

v _ _i " by — ;g’_
vt = ~L " 1 250 ( _ ﬁ) 22)
M(1,z) =tanh Bz A (23)
P = (P = 26x(PY) | D)
AR (z — h)? '
POz = ((JEFTDT e’“’( 37(0) )» @)
q(x) = f = dz P(x, 2)M(x, 2)* (26)
1
X = -}_ (1 — 2q(x) - f 2@ dx) @n
q(O) 4 :
_ . 28
=T or +f a-x@» @
- | {z —h)*
i —f ot en (<55 )) >

f=vap. . ‘ (30)
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In the above formalism P(I,z) and M(0,z) give the internal field distribution and the
local magnetization, respectively. Furthermore, if we consider only one condensed pattem
(s = 1) and A’ = 0, we can estimate the sample average {---) in (25), (29), and obtain the
following equations: -

_ 1 (2 — m/ /@)
P(O, Z) = —m,)_ exp (— T{O)) (31)
m= fco dz M0, z)P(0, 2} (32)

where we have written m' as m. It is noted that (31) and (32) coincide with the
corresponding equations for the SK model in a magnetic field. Consequently, in the same
way as for the SK model, the field distribution can be corrected to a non-trivial function
P{x, z) from the Gaussian distribution by the RS solution.

Equations (22)-(26) are similar to those for the SX model in which £ is scaled by
/& while (27) and (28) are specific to the present analysis. If we now consider the limit
J& — oo while keeping # constant, we obtain that x(x) — 0, r(x) = g(x) for arbitrary
x and that m = 0. We thus find that equations (22)(32) formally coincide with those of
the SK model and obtain the first result of this paper, i.e. we establish the *SK fimit’ of the
Hopfield model. In this way we furthermore prove the correctness of similar conjectures
for the ‘sG limit’ of the Hopfield model [4, 10, 11].

Here it is noted that the conditions § = 7 = 0 again yield the mean-field equations
obtained from the »S discussion. Furthermore, the differentiation of (26) with respect to x
gives the condition

1 Lo o]
— P 4 2. 33
§ —x(x)]z.[ dz P{x, )M (x, 2) 1 (33)
or
g=0. (34)

This equation is equivalent to the condition for marginal stability in replica space. If
we apply the RS solutions to (33), one can easily obtain the equation for the generalized
Almeida-Thouless line of the Hopfield model [4] as

aﬁz

J.lz_x " dz et Msecht [8 (varz + (m+2Y)] =[1- 81— ] (35)

where g and r correspond to the RS solutions of g(x) and r(x), respectively. k' denotes
the external field, conjugate to the first condensed pattern.

3.3. Numerical analysis

We have solved (22)-(32) numerically for some parameters. Analytical results are known
only near T, the SG transition temperature. Since we can interpet the linear terms of
(22), (24) as diffusion equations, by introducing the Green function, the nonlinear partial
differential equations (22}, (25) can be transformed to the following integral equations:

o 1 N s i
Glx,zx',2) = 2r(r{x") — rx)) exp( 2(r(x") — "(x))) ©o
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Figure 1. Order parameter function: (z) g{x), (p) r{x) and
() (c) x(¥) at T = 0.5 for o = 0.5, 1.0 and 2.0.

M{x,z) = f dz’ G(x, z; 1, z’) tanh Bz +f dx’ Br{x")x'
xf dz'G(x, 7, X', ZYMG, 2 WM' (', 2 37

_1 (y—m/«/E)l/z _fx P BAL Ay W
Jamra P ( 200 ) | D ArGx

X fw de’ G(x', 21 x, 2) (M(x’_, zVP(x’, z’)]' . (38)

P(x,z) =

This enables us to obtain M, P, m, r, q.and x by means of an iterative procedure in
the order (37)—>(31)—>(32)—(38)~>(26)—(27)—»(28)—(37) - - -. For numerical integration
and differentiation we discretized. the variables x and z, dmdmg the intervals [0, 1] and
[~7.5,7.5] into 20 and 100 pieces, respectively, using a cubic spline for interpolation. We
iterated the above procedure until the maximum variance of all the variables P, M, r, g and
x became less than 107°, which occurred typically in 700-900 iterations (dependent on o
and §).

Some typical order parameter funcnons are shown in figure 1 for a fixed value of the
temperature (T (= 1/8) = 0.5) and for a = 0.5, 1.0 and 2.0 (i.e. in the SG phase). We
see that the larger «, the smaller r(x) and yx(x), but the larger ¢(x). Consequently in
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the SK limit g{x) and r(x) are naively expected to be identical for arbitrary values of
x. The internal field distribution P(1,z) is represented in figure 2 for several o’s and
T’s. It is expected that the smaller o, the nearer the system approaches the RS region at
the temperature considered. Then we can see that a Gaussian form will be recovered for
smaller & or higher 7, while a double-peaked form of P(1, z) emerges for larger o or lower
T. Figure 3 concerns the variation of y for o at T = 0.5. We estimate the values of y,
the length of the plateau, by the point where dg(x)/dx is less than 1073. We see that y
can be scaled as y ~ ™7 (y = 0.5 £ 0.02). Consequently, as o gets smaller the valleys
with a large weight increase their relative frequency proportionally. Moreover, the larger
¢, the more the number of relatively small basins increases. Here we would like to stress
that an exponent of ¥ #~ (.5 implies that for large e, y scales according to the SK limit
(y = 0.5) and not according to the $G limit (y = 1.0) as thus far thought. Finally, the &
dependence of x(0) is given as circles in figure 4, which shows good agreement with the
line x(0) == 1/(1 + /) obtained analytically in [4]. It also indicates that the accuracy of
our numerical analysis was sufficient.

Figure 2. The internal field distrbution P(1,z), (@) at T = 0.5 for @ = 0.5,0.75, 1.0,
1.25, 1.5, 1.75 and 2.0 (bottom to top) and (b) at T = 0.4,0.5, 0.6 and 0.7 (bottora to top)
fore=1.

4. Summary

We have formulated the RSB solution for the Hopfield model, obtained the variational
equations for the order parameter functions and found that they are identical with equations
for the SK model as a limit (the SK limit of the Hopfeld model). The order parameter
functions are also estimated numerically for the 5G phase and from their functional form
the asymptotic dependence of the parameter y (characterizing the valley structure) on o is
obtained. .

Let us conclude by noting that recently the author has found a gauge invariance for
the free energy of the Hopfield model and formalized a free energy with the so-called
Sompolinsky gauge [19,20]. Using the new variational equations of the formalism, we
expect to obtain important results for the retrieval phase including an estimate for the critical
storage capacity within the full RSB theory. The results will be reported in a forthcoming
paper.
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Figure 3. The asymptotic dependence of y on @ at  Figure 4. x(0) (O) versus @ for T = 0.5. The curve
T =10.5 {log-log plot). represents x{(0) = 1/T; = 1/(1 + J/&).
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Appendix

We summarize some of the details involved in taking the » — 0 limit of the term
L = (o/2An)Trin[(1 — A1) — Q] in the free energy (9). Here we note that the essence of
the foilowing calculations is the diagonalization of Parisi’s replica matrix and properly taking
the limits. In general, an n-dimensional Parisi matrix A = Ag of level K is recursively
defined as the K'th iterate of

At @l - @l
a0t Aprr oo a@lUgn
A= . . ) . (AL
@i @l -+ A

with A = & representing the value of the diagonal elements. Uy denotes the py % pg
matrix whose elements are all 1. Each matrix A, is specified by its dimension p, and
the coefficient a; of non-diagonal submatrices Ug..;. Thus Aq is determined by the series
of integers n = pop > p; > -+ > pg > pg+1 = 1, where naturally p; needs o divide
Pe—1 in order for successive submatrices-to fit correctly, and the series of coefficients
{ao, dt, o g AE 41 = &}

By the recursive definition, the eigenvalues A of A are obtained [22] as

. .
hpo =) (P = Pir))8; + 8 (A2)
=0}



6924 K Tokita

which is non-degenerate, and as

K
M= (pi— pis)i — prox +3 (A3)
=k

which are po(1/peer — 1/pe)-fold degenerate for each k (¢ =0, 1, ..., K). The matrix Q
in L is a Parisi matrix whose diagonal elements are zero (§ = 0). Consequently, we use
the eigenvalues for evaluating L and obtain

K -
L= 5%—; In [1 -8 (1 + ;tps - Pi+1)Q'i)}
+ii(—-1~— i)1“ 1~-8 1+ZK:(P'—Pf+1)Q:—Pk¢Ik .
2B\ Pl D rer il

(A4)
Let us write the first and the second term as a/(28)L,, «/(28) L2, respectively. If we

change the order of the summation of & (like in a partial integration), L2 can be rewritten
as

i K
Ly = _E In [l - ﬁ(l + Z(P: — Pi+1)qi — Po%)]

i=0

K=1 p
* Z ﬁ [ln [1 - ﬁ(l +Z (pi = Pi+1)gi — Pk—1qk—l)]
k=0

i=k—1
i=k

K .
—In[1 — ﬁ(l + D Api — pisidg — pqu)” +In[1 - B(1—gx)]. (A3)

Now, while denoting the terms in Ly by Loy, Lo, Lzs, we obtain after taking the continuum
limit K ~ co and the limit pp(=n) — 0,

1 S - Bq(0)
Ly=——In|1-8{1+ i — Pi i) -
2 S [ ,3( ;(P Pi+1)q :I —_p —foldxq(x))
L
Ly = Z (_

k=0 \Pk

S

Bpr{ge-1 — qi)
In{l14+
[ L= B(L+ T pi — puida: — Pka):!

~ = (L) B G — qi)
S \Pk/ 1= B(1+ X (o — post)as — Peg)
! B4(x)
=— | dx (A6)
jc: 1- B[l - [ dF g(®) — xq(x)]
Ly =1In[1 — B(1 — g(1)}] (A7)

where we set gy = g(0), gx = q(1), pi — piya = dx and g;—1 — ¢; = §(x)dx. The
first term of Ly is cancelled out by L;, yielding L'5. Finally, L can be represented as
/2B (L1 + Laz + Lo3).
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