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Abstract. The replica-symmelry-breaking solution of the Hopfield model is formulated in order 
to investigale the multivalley s i m c t m  of the rugged free e n w .  It is found that the resulting 
variational equations are equivalent to those for the Shemngton-Kirkpahick (SK) model as a 
limit Numerical solutions are obtained for the spin-glass phase. These provide us with a weight 
dishibution of the valleys. 

1. Introduction 

Recently the words ‘spin glasses’ (SG) have been seen in diverse fields [1,2]. They have 
also appeared in many papers for neural network models. If we consider the Hopfield 
model [3,4] as a globally and not uniformly connected spin system, various SG-l ie  
properties emerge. Its most significant characteristics are the existence of a large number of 
metastable states and multivalley structures in phase space which are also typical examples 
of ‘broken ergodicity’ [5]. These properties were originally derived from an interpretation 
of the replica-symmetry-breaking (RSB) solution given by Parisi [6] for the Shemngton and 
Kirkpatrick (SK) model [7] of SG, and were thought to be rather specific to the SK model. 
More recent studies, however, have shown that this is not the case and that they are shared 
by other infinite-range SG modeIs[8]. In the present work, we will show that the Hopfield 
model, too, can be regarded as such a model. 

Very useful for obtaining some insight into the complexity of a valley structure is 
the basin of attraction which gives a quantitative measure for the ‘spread‘ of the valley. 
Therefore, in a previous paper, we studied numerically relationships between remanent 
overlaps and initial overlaps in the Hopfield model using Monte Carlo simulations and 
finite size scaling at zero temperature (T = 0) [9]. This provides an intuitive understanding 
for the valley structure in overlap space. In this paper, we consider the valleys in spin 
configuration space by obtaining the full RSB solution of the Hopfield model. It turns out 
that the formulation obtained is equivalent to the one for the original SK model in the limit 
f i  -+ w, where a (= p / N )  is the rate of memory-loading, p the number of random 
patterns for memories and N the system size. In this way we also proved conjectures by 
several authors [4,10,11] regarding the SG limit of the Hopfield model. Furthermore the 
full RSB solutions are obtained numerically for the so phase. 

The replica-symmetric (RS) solutions for the Hopfield model were investigated fully 
by Amit, Gutfreund and Sompolinsky (AGS) [41. One of their main results is that the RS 
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solutions are stable in almost all regions that belong to the ‘retrieval phase’ where the 
system behaves as an associative memory. They derived the mean-field equations and 
critical storage capacity (lc - 0.137 at T = 0 by extrapolating the RS solutions to the RSB 
region. The RS solutions for the SG states, however, are unstable in the entire region T < T, 
(the SG transition temperature) and those for the retrieval states become unstable at T < TR, 
the generalized De Almeida-Thouless line [4,12] for the Hopfield model. To overcome 
this difficulty, Crisanti et al have concentrated on estimating the critical storage capacity 
by considering the first-step RSB scheme (which effectively means taking K = 1 in the 
appendiX+and they obtained the value a, - 0.145 [13]. On the other hand, in this paper, 
the full RSB scheme will be employed to extract several pieces of information regarding the 
multivalley structure of the free energy of the Hopfield model, which interpolates between 
the Mattis model and the SK model. Furthermore, we will also reveal non-trivial asymptotic 
shifts of the system to the SK model, i.e. the ‘SK limit’, using the notion of the rugged free 
energy landscape. 

In section 2, the weights of the valleys will be defined first. Next, the statistical 
mechanical interpretation of the RSB solution and the relationships between the order 
parameter function and the weight distribution of valleys will be given. In section 3, we 
will briefly review the Hopfield model and apply the full RSB scheme. It turns out that the 
formulation obtained is equivalent to that for the original SK model as a limit. We solved 
numerically the resulting variational equations for the SG phase with rather large a’s and 
some values of temperature. These solutions provide us with the weight distribution of the 
valleys. Our results are summarized in section 4. 

2. Valleys 

First let us define the weights of the valleys. When the phase space is divided into a number 
of valleys indexed by k, the weight of kth valley, WI, is defined as the probability with 
which a randomly chosen initial state is in the kth valley. If the system is at equilibrium, 
WI can be represented as 

C W x = 1  
I 

where fk refers to the free energy of kth valley and fl = 1/T. In connection with W,, 
Mkzard et ul 1141 have defined a quantity 

Y =(p) J 

where (. . .) J denotes the sample average. The quantity y roughly shows the number and 
the width of the valleys and gives the relative distribution of the weights of the valleys. For 
example, there is only one large valley for y = 1, while there are many valleys with small 
weights for y = 0. 

be the magnetic moment of the ith spin of the pth pure state. 
Overlaps of magnetization between two pure states are defined as follows: 

Secondly, let mi,,, 
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It is noted that the self-overlap, qpp (e PEA). denotes the Edwards-Anderson order 
parameter. Using Boltzmann weights Pp, Po, the distribution of the overlap q is represented 
as 

The cumulative distribution function is defined as 

(5) 

Y (4) also gives the density of pure states with an overlap larger than q. If we now consider 
the function 

we see that its inverse, q(x ) ,  coincides exactly with the RSB solution of the SG order 
parameter, which is why it is called the physical interpretation of the RSB solution t6.151. 
The case Y(qEA)  refers to the self-overlap of a pure state by definition and is equivalent to 
y in (2) since W, = Pp (one pure state for one~valley). Furthermore, Y(qEA) is given by 
the length of the plateau of q ( x )  whose functional form depends on a. Hence. by obtaining 
the RSB solutions for various values of a, the variation of y can be estimated. 

3. The RSB scheme for the Hopfield model 

3.1. The AGS theory 

The Hamiltonian for the Hopfield model is given by 

where h" is a field conjugate to one of a finite number (s < p )  of 'condensed pattems'{t,% 
Jij is an interaction constructed from p random pattems (cr = i l .  p = 1,. . . , p )  as 

AGS have introduced the free energy of the Hamiltonian (7) as follows: 

as n + O  

where 
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Here I is a unit matrix with n x n elements, while Q is a replica matrix which gives the 
order parameter %b. By Tqn! we denote explicitly that the trace is taken over n-replicated 
binomial spins. Definitions for order parameters are given as follows: 

where 

denotes the random average for s ‘condensed patterns’. In addition to qob in the SK model, 
there appears one more order parameter, r,b, depending on two replica indices. AGS have 
shown that the RS solution (qab = 4 ,  rob = r )  is stable in almost all regions which belong 
to the so-called ‘retrieval phase’, and by extrapolating to the RSB region they derived mean- 
field equations at zero temperature (B -+ ca). However, in the limit @ --+ 00 the full 
RSB should be considered. Furthermore, the RS solutions for the SG states are unstable in 
all regions for the SG phase. In the next section we will consider Parisi’s RSB scheme for 
arbitrary values of a to extract the valleys’ variation to e. In particular. the RSB discussion is 
important for understanding the equivalence between the SK model and the Hopfield model 
with large 01. 

32 .  The full RSB scheme 

Following the formalism of AGS and Parisi’s recipe of taking a continuum limit of partitions 
of replica matrices (Parisi gauge), the free energy for the Hopfield model can be represented 
as the functional 

(16) 

which is maximized by the order parameter functions q ( x )  and r ( x ) ,  and minimized by mu. 
Here q ( x )  and r(x) correspond to the order parameters (13),(14) in the continuum limit, 
i.e. the SG order parameter function and the order parameter function describing the noise 
due to the uncondensed patterns, respectively. my denotes the average overlap of the states 
and the uth memorized pattern (12). The terms including x ( x )  correspond to the third term 
in (9) and they are obtained by taking the continuum limits of the eigenvalues of the replica 
matrix Q in (9) since it has a recursive structure. The details of the limiting process are 
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left to the appendix. Furthermore, g(x, z) (0 < x < 1, -00 c z c~ 00) is a solution of the 
following partial~differential  equation:^ , ~ , 

g(1.z) =fi-11n2coshfifiz. (18) 
The derivations of the terms containing g(x,z) are similar to the case for the SK 
model [6,8,161. x ( x )  and h correspond to the local susceptibilities at scale x and the 
effective field, respectively (h" denotes the external field, conjugate with uth condensed 
patte", as 

(19) 

1 '  
h = - c ( m y  + hY)f".  

f i  "4 
Equation (16) cannot directly be maximized numerically since g(0, z) depends implicitly 

on r (x)  through (17). Therefore we apply the schemes by Sommers et a1 [171 and 
Nemoto [181 to obtain the order parameter fUnctions q(x) ,  r(x) .  They make g(x, z )  
independent of r (x)  by introducing a Lagrange multiplier function P(x,  2). The new 
functional to be maximized is then defined as 

The equations to be solved can be obtained by taking functional derivatives of (21) with 
respect to q .  r, g, P and my:  

M(1, z) = tanhpz 
. i  

2 
P = -(P" - 2j7x(PM)') 

. ." 
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In the above formalism P(1, z) and M ( 0 ,  z) give the intemal field distribution and the 
local magnetization, respectively. Furthermore, if we consider only one condensed pattem 
(s = 1) and h’ = 0, we can estimate the sample average (. . .) in (25), (29). and obtain the 
following equations: 

where we have written m’ as m. It is noted that (31) and (32) coincide with the 
corresponding equations for the SK model in a magnetic field. Consequently, in the same 
way as for the SK model, the field distribution can be corrected to a non-trivial function 
P(x, z) from the Gaussian distribution by the RS solution. 

Equations (22)-(26) are similar to tho,% for the SK model in which B is scaled by 
JZ while (27) and (28) are specific to the present analysis. If we now consider the limit 
JZ constant, we obtain that x(x) + 0, r(x) = q(x) for arbitrary 
x and that m = 0. We thus find that equations (22H32) formally coincide with those of 
the SK model and obtain the first result of this paper, i.e. we establish the ‘SK limit’ of the 
Hopfield model. I n  this way we furthermore prove the correctness of similar conjectures 
for the ‘SG limit’ of the Hopfield model [4,10,11]. 

Here it is noted that the conditions q = i = 0 again yield the mean-field equations 
obtained from the RS discussion. Furthermore, the differentiation of (26) with respect to x 
gives the condition 

03 while keeping 

r m  

or 

q = 0 .  

This equation is equivalent to the condition for marginal stability in replica space. If 
we apply the RS solutions to (33), one can easily obtain the equation for the generalized 
Almeida-Thouless line of the Hopfield model [4] as 

where q and r correspond to the RS solutions of q(x) and r(x), respectively. h‘ denotes 
the external field, conjugate to the first condensed pattem. 

3.3. Numerical analysis 

We have solved (223-(32) numerically for some parameters. Analytical results are known 
only near T,, the SG transition temperature. Since we can interpet the linear terms of 
(22), (24) as diffusion equations, by introducing the Green function, the nonlinear partial 
differential equations (22), (25) can be transformed to the following integral equations: 
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Figure 1; Order parameter function: (a) q(x) .  ( b )  r ( x )  and 
(c) ~ ( x )  at T = 0.5 for (I =015.1.0 and 2.0. 

X 

(4 

This enables us to obtain M, P ,  m, r ,  q and x by means of an iterative procedure in 
the order (37)+(31)+(32)+(38)+(26)+(27)+(28)+(3t7). ... For numerical integration 
and differentiation we discretized the variables x and z ,  dividing the infexvals [0, 11 and 
[-7.5,7.5] into 20 and 100 pieces, respectively, using a cubic spline for interpolation. We 
iterated the above procedure until the maximum variance of all the variables P, M, r, q and 
,y became less than which occurred typically in 700-900 iterations (dependent on a 

Some typical order parameter functions are shown in figure 1 for a fixed value of the 
temperature (T (= I/,¶) = 0.5) and for a = 0.5, 1.0 and 2.0 (i.e. in the SO phase). We 
see that the larger a, the smaller r(n) and ~ ( x ) ,  but the larger q(x).  Consequently in 

and B)- 
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the SK limit q ( x )  and r ( x )  are naively expected to be identical for arbitray values of 
x .  The intemal field distribution P(1, z )  is represented in figure 2 for several a’s and 
T’s. It is expected that the smaller a, the nearer the system approaches the RS region at 
the temperature considered. Then we can see that a Gaussian form will be recovered for 
smaller a or higher T, while a double-peaked form of P( 1, z )  emerges for larger a or lower 
T .  Figure 3 concerns the variation of y for a at T = 0.5. We estimate the values of y, 
the length of the plateau, by the point where dq(x)/dr is less than We see that y 
can be scaled as y - 01-7 ( y  = 0.5 f 0.02). Consequently, as a gets smaller the valleys 
with a large weight increase their relative frequency proportionally. Moreover, the larger 
a, the more the number of relatively small basins increases. Here we would like to stress 
that an exponent of y % 0.5 implies that for large (I, y scales according to the SK h i t  
( y  = 0.5) and not according to the SG limit ( y  = 1.0) as thus far thought. Finally, the a 
dependence of x(0) is given as circles in figure 4, which shows good agreement with the 
line x(0)  = 1/(1 + &) obtained analytically in 141. It also indicates that the accuracy of 
our numerical analysis was sufficient. 

Figure 2 The intemal field distribution P ( l , z ) ,  (a) at T = 0.5 for a = 0.5.0.75, 1.0, 
1.25.1.5.1.75 and 2.0 (bot” to top) and (b)  at T = 0.4.0.5,0.6 and 0.7 (bottom to top) 
for (I = 1. 

4. Summary 

We have formulated the RSB solution for the Hopfield model, obtained the variational 
equations for the order parameter functions and found that they are identical with equations 
for the SK model as a limit (the SK limit of the Hopfield model). The order parameter 
functions are also estimated numerically for the SG phase and from their functional form 
the asymptotic dependence of the parameter y (characterizing the valley structure) on a is 
obtained. 

Let us conclude by noting that recently the author has found a gauge invariance for 
the free energy of the Hopfield model and formalized a free energy with the so-called 
Sompolinsky gauge [19,20]. Using the new variational equations of the formalism, we 
expect to obtain important results for the retrieval phase including an estimate for the critical 
storage capacity within the full RSB theory. The results will be reported in a forthcoming 
paper. 
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a 

Figure 3. The asymptotic dependence of y on ff at 
T = 0.5 (log-log plot). 
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Figure 4. x(0)  (0) versus (I for T = 0.5. The curve 
represents x(0) = l/T8 = 1/(1 +,E). 

Appendix 

We summarize some of the details involved in taking the n -+ 0 limit of the term 
L (or/(2,9n))Trln[(l -,9)I) -gQ] in the free energy (9). Here we note that the essence of 
the following calculations is the diagonalization of Parisi‘s replica matrix and properly taking 
the limits. In general, an n-dimensional Parisi matrix A = A, of level K is recursively 
defined as the Kth iterate of 

with AK+I = CI representing the value of the diagonal elements. U k  denotes the pk x pk 
matrix whose elements are. all 1. Each matrix is specified by its dimension pt and 
the coefficient a k  of non-diagonal submatrices U k + l .  Thus A, is determined by the series 
of integers n = po > p1 z ... > PK z PK+I = 1, where naturally pk needs to divide 
px-1 in order for successive submatrices~to fit correctly, and the series of coefficients 
{aLl,al, ..., aK,aK+I =z}. 

By the recursive definition, the eigenvalues I of A are obtained [22] as 
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which is nondegenerate, and as 

K 

Ak = x ( P i  - Pi+l)ai - pkak + (-43) 

which are po(l/pk+l - l/pk)-fold degenerate for each k (k = 0.1, . . . , K). The matrix 0 
in L is a Parisi matrix whose diagonal elements are zero (ij = 0). Consequently, we use 
the eigenvalues for evaluating L and obtain 

i d  

(-44) 

Let us write the first and the second term as a/(2B)L1,a/(2+4)Lz, respectively. If we 
change the order of the summation of k (like in a partial integration), LZ can be rewritten 
as 

Now, while denoting the terms in LZ by Lzl, Lu, LB. we obtain after taking the continuum 
limit K -+ CO and the limit PO(= n) + 0, 

where we set qo = q(O), q K  = q ( 0 ,  pi - p;+~ = dr and qj-1 - qj = q ( x ) d x .  The 
first term of LZI is cancelled out by L I ,  yielding L'zl. Finally, L can be represented as 
a1213 (L'zI + L22 + L23). 
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